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The spatial pattern dynamics in cyclic ecosystems composed of several species is studied by applying the
lattice version of the Lotka-Volterra model. By computer simulation, we carry out press perturbation: the
value of birth or death rate of a target spectes is changed, and held at a higher level. We explore the short-
and long-term responses; in particular, we record the population sizes of the target species. It is found that
the profile of the parameter dependence is determined by "parity” which is defined by whether each system
has an odd or even number of species. When the parity is even, the long-term response becomes similar to the
short-term one, On the other hand, in the case of odd parity, the long-term response is counterintuitive: it is
Jjust opposite to the short-term one. The spatial pattern formation of endangered species plays an important
role in this law.

1 INTRODUCTION

Under various human managements, ecosys-
tems receive perturbations, disturbances or stresses.
There are two ways to carry out perturbation exper-
iment: press and pulse perturbations. We are inter-
ested in the latter experiment; that is, the death or
birth rate of a target species is altered and held at a
higher level. The response of an ecosystem io the
press perturbation usually consists of two parts,™

“thiat i, shortsand long-term tesponses T The fors
mer response (less than several generation times) is
known to be intuitive (straightforward}; for example,
when the death rate of a target species is increased,
the density of the species decreases. On the other
hand, it is known that the latter response (more than
10 generation times) is very difficult to predict.!=%
Nevertheless, in recent years, coworkers of the au-
thors have dealt with a cyeclic system whose food
web is represented by a single one-dimensional chain,
and found a parity law,* where the parity is defined
by whether each system has odd or even number of
species. When the chain contains odd number of
species (odd chain), the long-term response becomes
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Figure 1: [Hustration of system for n=5.

very frequently opposite to the short-term one { “op-
posite response”}. On the other hand, in the case of
even chain, the opposite response rarely cccurs. In
the present article, we demonstrate that the parity
law also holds for a more complicated sysiem which
contains both odd and even chains.

2 MODEL

We consider a cyclic model composed of n species:
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Xiag+ & —  2X; (1)
Xo -t X (2)

where X; means an individual of species ¢ and i =
i, n (Xse1 = X4). The reaction (1) schematically
represents that the specles ¢ reproduces offspring
by eating species i — 1; especially for n = 3, (e
1) denotes the Paper-Scissors-Stone (PSS) game®/,

- For- example, species 1-denotes. plant and species 2 -

(3) represents herbivore {carnivore). Although plant
never eats carnivore, it takes chemical components
from the dead body of carnivore.

We can regard the reaction (2) as a perturbation
which violates the equal balance between species. If
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X4 dies, 1t is served for the species 1. Hence, the
parameter d means the death rate of species 2 (d >
0). Gur system (1) and {2) is a generalization of
the contact process (CP)®7 represented by (2) and
Xy +Xy s 2X,. When n is odd, Our system contains
both odd and even chains; for example, if n = 3.9
contains the odd (PSS) and even (CP) chains.

We apply a method of lattice Lotka-Volterra
model (LLVM)*~8) to the system (1)and(2), where
we assume 3 < n < 8. We briefly describe this
method. 1} Each lattice site is occupied by a sin-
gle individual of one of n species. 2) The system
gvolves in the following two steps. 1) We perform
the reaction (1); choose one lattice site randomly,
and then specify one of eight neighbor sites {Moeore
neighborhood), Let the pair react according to (1)
il) Next, we perform the reaction {2}: choose one site
randomly. If the site 15 X,, then it becomes X, by
the rate d.

3 THEORIES

3.1 Master Equation

The basic equations for the system are

Pg =
B o= Piyg-

FPio = Pog —dPy (3)

Fivy (for i23) {4)

where I3 s the density of species 7. (i = 1, :00,n), the. .

dots denote the derivative with respect to the time
t which is measured by the unit of the Monte Carlo
step, and Fj; denotes the probability density finding
&'species j atb a site and 8 species k at a ngighbor of
that site {7,k = 0,---,n). Note Py differs from the
conditional probability. The relations

Pie = Py, LjFPey = Py, (5)

and
DpF o= 1 {6)

thus hold.

3.2 Mean-Field Theory

It is well known that the first approximation is the
mean-field theory {MI'T): if the reactions (7)and(8)
take place between any pair of individuals, the popu-
lation dynamics can be represented by MFT which is
equivalent to the Lotka-Volterra model. The steady-
.. state solution for MFT can be obtained by setting.
all the time derivatives to be zero, and substituting

dP2 -
dP; =

Po(P ~ Py —dP,y {7
PiPisy~ Pyyi {for i23) (&)

i s s 7 T
n=3
0.8 -
[# 5]
i
[
99}
=
L
[
0.2 X3 -
o | FE x
0 0.2 0.4 0.6 0.8 1
DEATH RATE(d)
i i I i ]
n=5
0.8 -
93]
Ww 5s -
b
48]
X1 X2 X4
& 04 —
[
0.2 —
\\\ K3 X5
~
0 [~ | i i
6 0z D4 06 08 1
o DEATH RATE(d)
Figure 2: The steady-state densities are shown

against the death rate d in the case of odd parity
{n=3,9) by MFT.

If n is even {n = 2k), above equalions never give any
non-trivial staticnary solution; species 2 goes extinet.
Ifnis odd (n = 2k -+ 1), we can get a stationary
solution; by setting all the time derivatives in (3}
and (4) to be zero, and substituting (6}, we have

n—1

d)/n (@)

Pimyr = (1= “22a)/n (10)

In Figure 2, the steady-state densities are de-
picted against d for several odd values of n. We
consider the following press perturbation: the value
of d is altered from zero to a non:zero value of d.
We can describe the long-term response of this ex-
periments in mean-field: First, spacies 2 is regarded
as a target species. Recall that parameter d means
a death rate of species 2. MPT shows the follow-
ing parity faw: {i) When n is even, ihe density of

Pﬁm:PI:(}"f"
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Figure 3: Short-term response for the lattice model (n = 3, 5). The value of d is suddenly increased
from 0.0 to 0.3 at ¢t = 0.
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Figure 5: Same as Fig. 2, but for the lattice model (n = 3,5, 7).



species 2 (Pp) decreases and goes extinct. (ii) When
n i1s odd, P increases with the increase of ¢. Hence,
the long-term response for odd number of n becomes
counterintuitive. Second, species 1 is regarded as a
target species; d means the birth rate of species 1.
In this case, MF'T never predicts the parity law: (i)
When n is even, Py increases. (ii) When n is odd, P,
increases. No counterintuitive responses thus oceurs.

4 RESULT OF LATTICE
MODEL

The results of lattice model {LLVM) support the
parity law. We study perturbation experiment by
computer simulation. We change the death rate of a
target species, and record the density of all species.
Before the perturbation {¢ < 0), the system is as-
sumed to remain in a stationary state of d = G.0.
At 1 = 0, the death rale is suddenly changed from
d=0.0t%t0d= 03

In Figure 3, typical examples of short-term re-
sponse are shown. When ¢ takes a small value, P,
{Py) always decreases (increases). Such a short-term
response can be proven from the basic equation.®
The long-term response is depicted in Figure 4. From
this figure we find that the long-term response ex-
hibits the parity law: when the system contains even
number of species {n is even}, then the species 2 be-
comes extinet (P = 0). On the contrary, when n
is odd, the steady-state density of the species 2 is
increased by the perturbation (opposite response.

oo b Pigure-by-the -steady-state -densities ~of all

species are plotted against the death rate d. Indeed,
we can confirm that the steady-state density P, in-
creases with d,

5 CONCLUSION

We have developed model ecosystems which re-
veal the parity law. The parity, a rough property of
an ecosystem, is relevant for the prediction of long-
term response. The lattice model of LLV M shows the
parity dependence for both species 1 and 2, whereas
MFT fails for the species 1. In the case of odd par-
ity, our system has both odd and even chains; with
increasing d the latter should prevails the former.
However, simulation reveals that the odd chain al-
ways prevails regardless of the value of d.

We discuss the mechanism of parity dependence.
If the density of species j (a target species) is as-
sumed to be directly increased by an applied per-
turbation, the density of their prey (species j — 1 of

tion as the direct response. However, in the case of
odd parity, the direct and indirect effects an species
J are mutually inconsistent. Our results indicate the
importance of the indirect effect for the long-term
response.

The parity law is useful for the prediction of
mode] systems, but it is still suspicicus whether this
law does hold in real ecosystems. Our model shows
that a long-term response is very frequenily opposite
to the short-term cne. Heretofore, very litile liter-
ature is known for the perturbation experiment of
long-ierm response {more than 10 generation times}.
The study of long-term response may be important
in ecosystems,
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species j wili be decreased by an indirect effect. Sim-

~ilarly, the density of species through a cyclic chain.
Provided that the parity of the chain is even, the
density of species j is again imcreased by an indirect
effect. Since the direct and indirect effects are consis-
tent, the long-term response becames the same direc-
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